
Security Assessment

MOBOX

Apr ��th, ����

Summary

This report has been prepared for MOBOX smart contracts, to discover issues and vulnerabilities in the

source code of their Smart Contract as well as any contract dependencies that were not part of an

officially recognized library. A comprehensive examination has been performed, utilizing Dynamic

Analysis, Static Analysis, and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry

standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts

produced by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We

suggest recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

MOBOX Security Assessment

Overview

Project Summary

Project Name MOBOX

Description DeFi

Platform BSC

Language Solidity

Codebase https://github.com/moboxio/NFTfarmer/tree/f�b�a����ced�������d���������f�b���cd���

Commits ����add��a�dadfefab���ac�b���c���d��e���

Audit Summary

Delivery Date Apr ��, ����

Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Total Issues ��

Critical �

Major ��

Minor ��

Informational �

Discussion �

MOBOX Security Assessment

Audit Scope

ID file SHA��� Checksum

KTM KeyToken.sol �ca���d�ea�dfcc�������f�f�e���fc�d�e��d�c��e���e�������db�cc�e�d

MFM MoboxFarm.sol ���b������befc�dc�e������ea�c��d�a�����a���e�ec���f�b�����c�����

MSP MoboxStrategyP.sol f�fdac�c���������cfe���ac����eb�����aba�e��b�ce��ccb�ee�f�cfda��

MSV MoboxStrategyV.sol ����f�c�ad��bc���fea�d��f��dd�eeadedbefc��efb��e��b����d������a�

MTM MoboxToken.sol ��ada�a�edf��f��eb������e��d��cafc���da�������c�b���c�c��b��b�a�

MSM MomoStaker.sol ���c�����b��e�daad�adf�������f��b��a�����������a�e�������fae�ecc

MOBOX Security Assessment

Findings

ID Title Category Severity Status

MOBOX-�� Privileged Ownerships
Centralization /

Privilege
Minor Pending

CMO-�� Redundant Expression Volatile Code Minor Pending

KTM-�� Missing Zero Address Validation Volatile Code Minor Acknowledged

MFM-�� Implicitly Return Values Coding Style Informational Acknowledged

MFM-�� Missing Return Value Handling Logical Issue Minor Resolved

MFM-�� Dangerous Usage of block.timestamp Logical Issue Minor Acknowledged

MFM-�� Missing Checks for Reentrancy Logical Issue Major Resolved

MSM-�� Divide Before Multiply Logical Issue Minor Pending

MSM-��
userHashratePercent is Undefined for

One amountV� Holders
Logical Issue Major Pending

MSM-�� Incorrect ERC�� Interface Volatile Code Minor Pending

MSM-�� Dangerous Strict Equalities Logical Issue Minor Pending

MSM-��
Inaccurate Parameter of

HashrateChange Event
Logical Issue Major Pending

MSM-�� Stake Nft without doing real transfer Logical Issue Major Pending

MSM-�� Reentrancy vulnerabilities Logical Issue Major Pending

MOBOX Security Assessment

��
Total Issues

Critical � (�.��%)

Major �� (��.��%)

Minor �� (��.��%)

Informational � (��.��%)

Discussion � (�.��%)

ID Title Category Severity Status

MSM-�� Uninitialized Local Variables Volatile Code Minor Pending

MSM-�� Unused Return Volatile Code Minor Pending

MSM-�� �rd Party Dependencies Control Flow Minor Pending

MSM-�� Missing Zero Address Validation Control Flow Minor Pending

MSM-�� Calls Inside A Loop Logical Issue Minor Pending

MSM-��
Public Function Could Be Declared

External
Gas Optimization Minor Pending

MSP-�� Integer Overflow
Mathematical

Operations
Minor Resolved

MSP-�� Missing Checks for Reentrancy Logical Issue Major Resolved

MSP-�� Missing Zero Address Validation Logical Issue Minor Resolved

MSP-�� Missing slippage protection Logical Issue Minor Acknowledged

MSP-�� Wrong Withdraw Amount Logical Issue Major Resolved

MSP-�� Implicitly Return Values Coding Style Informational Acknowledged

MSP-�� Unimpletation Constructor Function Volatile Code Informational Resolved

MSP-�� �rd Party Dependencies Control Flow Minor Acknowledged

MSV-�� Integer Overflow
Mathematical

Operations
Minor Resolved

MSV-�� Missing slippage protection Logical Issue Minor Acknowledged

MSV-�� Compile Error Compiler Error Critical Resolved

MSV-�� Missing Checks for Reentrancy Logical Issue Major Resolved

MSV-�� Missing Access Control Logical Issue Major Resolved

MSV-�� Implicitly Return Values Coding Style Informational Acknowledged

MSV-�� Ignored Return Values Logical Issue Major Acknowledged

MSV-�� Leverage risk Logical Issue Informational Resolved

MOBOX Security Assessment

ID Title Category Severity Status

MSV-�� �rd Party Dependencies Control Flow Minor Acknowledged

MTM-��
Mint to _dest address instead of

mining pool
Logical Issue Minor Pending

MOBOX Security Assessment

MOBOX-�� | Privileged Ownerships

Category Severity Location Status

Centralization / Privilege Minor Global Pending

Description

The owner and Strategist has the permission to setDevTeam, setFeeRate and other global controls

without obtaining the consensus of the community.

Recommendation

Renounce ownership when it is the right timing, or gradually migrate to a timelock plus multisig

governing procedure and let the community monitor in respect of transparency considerations.

MOBOX Security Assessment

CMO-�� | Redundant Expression

Category Severity Location Status

Volatile Code Minor comm/Context.sol: ��~��(Context) Pending

Description

 functionfunction _msgData_msgData(()) internal view virtual internal view virtual returnsreturns ((bytes memorybytes memory)) {{
 thisthis;; // silence state mutability warning without generating bytecode - see// silence state mutability warning without generating bytecode - see
https://github.com/ethereum/solidity/issues/2691https://github.com/ethereum/solidity/issues/2691
 returnreturn msg msg..datadata;;
 }}

Redundant expression "this (comm/Context.sol#��)" inContext (comm/Context.sol#��-��)

Recommendation

Remove redundant statements if they congest code but offer no value.

MOBOX Security Assessment

KTM-�� | Missing Zero Address Validation

Category Severity Location Status

Volatile Code Minor KeyToken.sol: �� Acknowledged

Description

lacks a zero-check on : - moboxFarm = farm_ (KeyToken.sol#��)

Recommendation

Adding check that farm_ is not zero. If zero address is used to stop mining, then similar check like

require(msg.sender == moboxFarm, "not farm") should also be added to mintForEvent().

MOBOX Security Assessment

MFM-�� | Implicitly Return Values

Category Severity Location Status

Coding Style Informational MoboxFarm.sol: ��� Acknowledged

Description

Functions defined with return values but values are returned implicitly.

Recommendation

We recommend always return values explicitly.

MOBOX Security Assessment

MFM-�� | Missing Return Value Handling

Category Severity Location Status

Logical Issue Minor MoboxFarm.sol: ���~��� Resolved

Description

Approve is not a void-returning function per IERC�� interface. Ignoring the return value might cause

some unexpected exception, especially if the callee function doesnʼt revert automatically when failing.

Recommendation

We recommend checking the return value before continuing processing.

MOBOX Security Assessment

MFM-�� | Dangerous Usage of block.timestamp

Category Severity Location Status

Logical Issue Minor MoboxFarm.sol: ���, ���, ���, ���, ���, ���, ���, ��� Acknowledged

Description

block.timestamp can be manipulated by miners.

Recommendation

Avoid relying on block.timestamp.

MOBOX Security Assessment

MFM-�� | Missing Checks for Reentrancy

Category Severity Location Status

Logical Issue Major MoboxFarm.sol: ���~���, ���, ���, ���, ���, ���, ���, ��� Resolved

Description

Functions have state updates or event emits after external calls are vulnerable to reentrancy attack.

Recommendation

We recommend applying OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the

aforementioned functions to prevent reentrancy attack.

MOBOX Security Assessment

MSM-�� | Divide Before Multiply

Category Severity Location Status

Logical Issue Minor MomoStaker.sol: ���~���(MomoStaker), ���~���(MomoStaker) Pending

Description

MoMoStaker.earned(address,uint���) (MomoStaker.sol#���-���) performs a multiplication on the

result of a division: -userHashRate =

uint���(info.userHashrateFixed).mul(uint���(info.userHashratePercent) + �����).div(�����)

(MomoStaker.sol#���) -

userHashRate.mul(rewardPerHashrate.sub(uint���(info.userRewardPerTokenPaid))).add(uint���(info.u

serReward)) (MomoStaker.sol#���)

For example,Line #���:

elseelse ifif ((amount amount <=<= 200200)) {{
 percent percent == ((amount amount -- 100100)) // 2525 ** 100100 ++ 17001700;; // 17% ~ 21%// 17% ~ 21%
 }}

If 25 is greater than amount - 100 , result will be zero. In general, it's usually a good idea to re-arrange

arithmetic to perform multiplication before division, unless the limit of a smaller type makes this

dangerous.

Recommendation

Consider ordering multiplication before division.

MOBOX Security Assessment

MSM-�� | userHashratePercent is Undefined for One amountV� Holders

Category Severity Location Status

Logical Issue Major MomoStaker.sol: ��� Pending

Description

��� // V� collection ��� amount = uint���(counter.amountV�); ��� if (amount > �) { ��� if (amount <=

�) {

userHashratePercent is undefined, if "amount == �".

Recommendation

We recommend to return userHashratePercent explicitly for each possible amount.

MOBOX Security Assessment

MSM-�� | Incorrect ERC�� Interface

Category Severity Location Status

Volatile Code Minor MomoStaker.sol: ��~��(MomoStaker) Pending

Description

IMoMoToken (MomoStaker.sol#��-��) has incorrect ERC�� function

interface:IMoMoToken.transferFrom(address,address,uint���) (MomoStaker.sol#��)

Incorrect return values for ERC�� functions. A contract compiled with Solidity > �.�.�� interacting with

these functions will fail to execute them, as the return value is missing.

Exploit Scenario:

interfaceinterface IMoMoTokenIMoMoToken {{
 functionfunction transferFromtransferFrom((address from_address from_,, address to_ address to_,, uint256 tokenId_ uint256 tokenId_)) external external;;
 functionfunction getMomoSimpleByTokenIdgetMomoSimpleByTokenId((uint256 tokenId_uint256 tokenId_)) external view external view returnsreturns((uint256uint256,,
uint256uint256));;
 functionfunction levelUplevelUp((uint256 tokenId_uint256 tokenId_,, uint256 uint256[[]] memory protosV1V2V3_ memory protosV1V2V3_,, uint256 uint256[[]] memory memory
amountsV1V2V3_amountsV1V2V3_,, uint256 uint256[[]] memory tokensV4V5_ memory tokensV4V5_)) external external;;
 functionfunction setMomoNamesetMomoName((uint256 tokenId_uint256 tokenId_,, bytes memory name_ bytes memory name_)) external payable external payable;;
 functionfunction addMomoStoryaddMomoStory((uint256 tokenId_uint256 tokenId_,, bytes memory story_ bytes memory story_)) external payable external payable;;
}}

IMoMoToken.transferFrom() does not return a boolean . Bob deploys the token. Alice creates a

contract that interacts with it but assumes a correct ERC20 interface implementation. Alice's contract is

unable to interact with Bob's contract.

Recommendation

Set the appropriate return values and types for the defined ERC20 functions.

MOBOX Security Assessment

MSM-�� | Dangerous Strict Equalities

Category Severity Location Status

Logical Issue Minor MomoStaker.sol: ���~���(MomoStaker) Pending

Description

Use of strict equalities that can be easily manipulated by an attacker.

MoMoStaker._rewardPerHashrate(uint���) (MomoStaker.sol#���-���) uses a dangerous strict

equality:

 functionfunction _rewardPerHashrate_rewardPerHashrate((uint256 lastTimeRewardApplicable_uint256 lastTimeRewardApplicable_)) internal view internal view returnsreturns
((uint256uint256)) {{
 ifif ((totalHashrate totalHashrate ==== 00 |||| block block..timestamptimestamp <=<= rewardStartTime rewardStartTime)) {{
 returnreturn rewardPerTokenStored rewardPerTokenStored;;
 }}
 returnreturn rewardPerTokenStored rewardPerTokenStored..addadd((

lastTimeRewardApplicable_lastTimeRewardApplicable_..subsub((lastUpdateTimelastUpdateTime))..mulmul((rewardRaterewardRate))..divdiv((totalHashratetotalHashrate))
));;
 }}

_rewardPerHashrate relies on totalHashrate == 0 || block.timestamp <= rewardStartTime to know

rewardPerHashrate or RewardPerTokenStored.

Recommendation

Don't use strict equality to determine if an account has enough Ether or tokens.

MOBOX Security Assessment

MSM-�� | Inaccurate Parameter of HashrateChange Event

Category Severity Location Status

Logical Issue Major MomoStaker.sol: ���, ���, ��� Pending

Description

3333 // changeType: 1 stake/2 mint and stake/3 withdraw/4 level up/5 create auction/6// changeType: 1 stake/2 mint and stake/3 withdraw/4 level up/5 create auction/6
cancel auction/7 bid auct ioncancel auction/7 bid auct ion
 3434 event event HashrateChangeHashrateChange((address indexed useraddress indexed user,, uint256 changeType uint256 changeType,, uint256 uint256
oldhashRateoldhashRate,, uint256 newHashRate uint256 newHashRate));;
 3535

There is no promise HashrateChange will emit with the right changeType as the comment.

600600 uint256 hashrateFixedSub uint256 hashrateFixedSub == _removeNft_removeNft((msgmsg..sendersender,, protosV1V2V3_ protosV1V2V3_,,
amountsV1V2V3_amountsV1V2V3_,, tokensV4V5_ tokensV4V5_,, 0x020x02,, 00)) ;;

Also this call happens in level up but call _removeNft() with changeType=�.

Recommendation

We recommend to set the right changeType of HashrateChange directly like in Line ���. ��� emit

HashrateChange(msg.sender, �, oldHashRate, newHashRate);

And check all calling to HashrateChange() with the right changeType.

MOBOX Security Assessment

MSM-�� | Stake Nft without doing real transfer

Category Severity Location Status

Logical Issue Major MomoStaker.sol: ���~���, ��� Pending

Description

_stakeNft(msg.sender, ids, vals, tokenIds, false, �);

There are places call "_stakeNft()" without doing real transfer.

Recommendation

We recommend to confirm whether this is the right behavior.

MOBOX Security Assessment

MSM-�� | Reentrancy vulnerabilities

Category Severity Location Status

Logical

Issue
Major

MomoStaker.sol: ���~���(MomoStaker), ���~���(MomoStaker), ���~���

(MomoStaker), ���~���(MomoStaker)
Pending

Description

Reentrancy in MoMoStaker.removeNft(address,uint���[],uint���[],uint���[],uint���,uint���)

(MomoStaker.sol#���-���): External calls: -

momomToken.safeBatchTransferFrom(address(this),user,ids,amounts_,) (MomoStaker.sol#���) -

momoToken.transferFrom(address(this),user,tokenIds_[i]) (MomoStaker.sol#���) State variables

written after the call(s): - counter.amountV� = SafeMathExt.sub��(counter.amountV�,uint��(�))

(MomoStaker.sol#���) - counter.amountV� = SafeMathExt.sub��(counter.amountV�,�)

(MomoStaker.sol#���) - counter.amountV� = SafeMathExt.sub��(counter.amountV�,�)

(MomoStaker.sol#���)

Reentrancy in MoMoStaker.stakeNft(address,uint���[],uint���[],uint���[],bool,uint���)

(MomoStaker.sol#���-���): External calls: -

momomToken.safeBatchTransferFrom(user,address(this),ids,amounts_,) (MomoStaker.sol#���) -

momoToken.transferFrom(user,address(this),tokenIds_[i]) (MomoStaker.sol#���) State variables

written after the call(s): - momos.push(tokenIds_[i]) (MomoStaker.sol#���) - counter.amountV� =

SafeMathExt.add��(counter.amountV�,uint��(�)) (MomoStaker.sol#���) - counter.amountV� =

SafeMathExt.add��(counter.amountV�,�) (MomoStaker.sol#���) - counter.amountV� =

SafeMathExt.add��(counter.amountV�,�) (MomoStaker.sol#���)

Reentrancy in MoMoStaker.mintAndStake(uint���) (MomoStaker.sol#���-���): External calls: -

(ids,vals,tokenIds) = momoMinter.mintByStaker(msg.sender,amount_) (MomoStaker.sol#���) -

stakeNft(msg.sender,ids,vals,tokenIds,false,�) (MomoStaker.sol#���) -

momomToken.safeBatchTransferFrom(user,address(this),ids,amounts_,) (MomoStaker.sol#���) -

momoToken.transferFrom(user,address(this),tokenIds_[i]) (MomoStaker.sol#���) State variables

written after the call(s): - stakeNft(msg.sender,ids,vals,tokenIds,false,�) (MomoStaker.sol#���) -

info.userHashrateFixed =

SafeMathExt.sub���(info.userHashrateFixed,SafeMathExt.safe���(hashrateFixedSub))

(MomoStaker.sol#���) - info.userHashrateFixed =

SafeMathExt.add���(info.userHashrateFixed,SafeMathExt.safe���(hashrateFixedAdd_))

(MomoStaker.sol#���) - info.userHashratePercent = SafeMathExt.safe���(checkCollection(user))

MOBOX Security Assessment

(MomoStaker.sol#���) - _stakeNft(msg.sender,ids,vals,tokenIds,false,�) (MomoStaker.sol#���) -

totalHashrate = totalHashrate.add(newHashRate).sub(oldHashRate) (MomoStaker.sol#���)

Recommendation

Apply the check-effects-interactions pattern.

MOBOX Security Assessment

MSM-�� | Uninitialized Local Variables

Category Severity Location Status

Volatile Code Minor MomoStaker.sol: ���(MomoStaker) Pending

Description

MoMoStaker._stakeNft(address,uint���[],uint���[],uint���[],bool,uint���).hashrateFixed

(MomoStaker.sol#���) hashrateFixed is a local variable never initialized

Recommendation

Initialize all the variables. If a variable is meant to be initialized to zero, explicitly set it to zero to improve

code readability.

MOBOX Security Assessment

MSM-�� | Unused Return

Category Severity Location Status

Volatile

Code
Minor

MomoStaker.sol: ���(MomoStaker), ���(MomoStaker), ���(MomoStaker),

���(MomoStaker)
Pending

Description

MoMoStaker.setRewardMgr(address) (MomoStaker.sol#���-���) ignores return value by

_moboxToken.approve(rewardMgr,�) (MomoStaker.sol#���) MoMoStaker.setRewardMgr(address)

(MomoStaker.sol#���-���) ignores return value by _moboxToken.approve(rewardMgr,uint���(- �))

(MomoStaker.sol#���) MoMoStaker.getDevTeamReward() (MomoStaker.sol#���-���) ignores return

value by _moboxToken.transfer(devTeam,amount) (MomoStaker.sol#���) MoMoStaker.getReward()

(MomoStaker.sol#���-���) ignores return value by _moboxToken.transfer(msg.sender,userReward)

(MomoStaker.sol#���)

Recommendation

Ensure that all the return values of the function calls are used.

MOBOX Security Assessment

MSM-�� | �rd Party Dependencies

Category Severity Location Status

Control Flow Minor MomoStaker.sol: ���, ���, ��� Pending

Description

��� (prototype, hashrate) = momoToken.getMomoSimpleByTokenId(tokenIds[i]); ��� (ids, vals,

tokenIds) = momoMinter.mintByStaker(msg.sender, amount_); ��� momoToken.levelUp(tokenId,

protosV�V�V�_, amountsV�V�V�_, tokensV�V�_);

"hashrate", mint and levelUp depends on �rd party entities.

Recommendation

We encourage the team to constantly monitor the status of those �rd parties to mitigate the side

effects when unexpected activities are observed.

MOBOX Security Assessment

MSM-�� | Missing Zero Address Validation

Category Severity Location Status

Control Flow Minor MomoStaker.sol: ���~���(MomoStaker) Pending

Description

MoMoStaker.setMoMoStakerAuction(address).addr_ (MomoStaker.sol#���) lacks a zero-check on : -

stakerAuction = addr_ (MomoStaker.sol#���) MoMoStaker.setDevTeam(address).addr_

(MomoStaker.sol#���) lacks a zero-check on : - devTeam = addr_ (MomoStaker.sol#���)

Recommendation

Check that the address is not zero.

MOBOX Security Assessment

MSM-�� | Calls Inside A Loop

Category Severity Location Status

Logical Issue Minor MomoStaker.sol: ���~���(MomoStaker), ���~���(MomoStaker) Pending

Description

Calls inside a loop might lead to a denial-of-service attack.

MoMoStaker.stakeNft(address,uint���[],uint���[],uint���[],bool,uint���) (MomoStaker.sol#���-

���) has external calls inside a loop: momoToken.transferFrom(user,address(this),tokenIds[i])

(MomoStaker.sol#���)

MoMoStaker._stakeNft(address,uint���[],uint���[],uint���[],bool,uint���) (MomoStaker.sol#���-

���) has external calls inside a loop: (prototype,hashrate) =

momoToken.getMomoSimpleByTokenId(tokenIds[i]) (MomoStaker.sol#���)

MoMoStaker._removeNft(address,uint���[],uint���[],uint���[],uint���,uint���)

(MomoStaker.sol#���-���) has external calls inside a loop: (prototype,shareParams[�]) =

momoToken.getMomoSimpleByTokenId(tokenIds[i]) (MomoStaker.sol#���)

MoMoStaker.removeNft(address,uint���[],uint���[],uint���[],uint���,uint���)

(MomoStaker.sol#���-���) has external calls inside a loop:

momoToken.transferFrom(address(this),user,tokenIds[i]) (MomoStaker.sol#���)

Recommendation

Favor pull over push strategy for external calls.

MOBOX Security Assessment

MSM-�� | Public Function Could Be Declared External

Category Severity Location Status

Gas Optimization Minor MomoStaker.sol: ��~��(MomoStaker) Pending

Description

transferOwnership(address) should be declared external: - Ownable.transferOwnership(address)

(comm/Ownable.sol#��-��)

public functions that are never called by the contract should be declared external to save gas.

Recommendation

Use the external attribute for functions never called from the contract.

MOBOX Security Assessment

MSP-�� | Integer Overflow

Category Severity Location Status

Mathematical Operations Minor MoboxStrategyP.sol: ���, ���, ���, ��� Resolved

Description

Although integer overflows would not happen if some variables such as now are within regular ranges,

SafeMath is still highly recommended for mathematical operations, if gas costs are not considered as a

most significant factor in implementations, to prevent exceptions.

Recommendation

We recommend applying SafeMath.add at the aforementioned line

MOBOX Security Assessment

MSP-�� | Missing Checks for Reentrancy

Category Severity Location Status

Logical Issue Major MoboxStrategyP.sol: ��� Resolved

Description

Function harvest() have state updates or event emits after external calls and thus are vulnerable to

reentrancy attack.

Recommendation

Applying nonReentrant modifier.

MOBOX Security Assessment

MSP-�� | Missing Zero Address Validation

Category Severity Location Status

Logical Issue Minor MoboxStrategyP.sol: ��� Resolved

Description

lacks a zero-check on :

strategist = strategist_ (MoboxStrategyP.sol#���)

Recommendation

Adding check that strategist_ is not zero address.

MOBOX Security Assessment

MSP-�� | Missing slippage protection

Category Severity Location Status

Logical Issue Minor MoboxStrategyP.sol: ���, ���, ��� Acknowledged

Description

Missing slippage protection in all swapExactTokensForTokensSupportingFeeOnTransferTokens()

functions.

Recommendation

There is well-known sandwich attacks in uniswap, we recommend always set slippage protection in

similar functions.

MOBOX Security Assessment

MSP-�� | Wrong Withdraw Amount

Category Severity Location Status

Logical Issue Major MoboxStrategyP.sol: ���~��� Resolved

Description

165165 uint256 lpBalance uint256 lpBalance == IERC20IERC20((wantTokenwantToken))..balanceOfbalanceOf((addressaddress((thisthis))));;
166166 ifif ((lpBalance lpBalance << amount_ amount_)) {{
169169 }}
170170
171171 uint256 wantAmount uint256 wantAmount == lpBalance lpBalance;;

If lpBalance > amount_, then wantAmount still set to lpBalance.

Recommendation

Confirm this is intended, or set wantAmount to amount_.

MOBOX Security Assessment

MSP-�� | Implicitly Return Values

Category Severity Location Status

Coding Style Informational MoboxStrategyP.sol: ���~���, ��� Acknowledged

Description

Functions defined with return values but values are returned implicitly.

Recommendation

We recommend always return values explicitly.

MOBOX Security Assessment

MSP-�� | Unimpletation Constructor Function

Category Severity Location Status

Volatile Code Informational MoboxStrategyP.sol: ��~�� Resolved

Description

constructor() public Unimpletation constructor function

Recommendation

Impletation constructor function,should delete if not needed

MOBOX Security Assessment

MSP-�� | �rd Party Dependencies

Category Severity Location Status

Control Flow Minor MoboxStrategyP.sol Acknowledged

Description

MoboxStrategyP and MoboxStrategyV are serving as the underlying entity to interact with third party

cake and venus protocols. The scope of the audit would treat those �rd party entities as black boxes

and assume its functional correctness. However in the real world, �rd parties may be compromised that

led to assets lost or stolen.

Recommendation

We understand that the business logic of Mobox requires the interaction with cake and venus for the

sake of pursuing capital gains of its users. We encourage the team to constantly monitor the status of

those �rd parties to mitigate the side effects when unexpected activities are observed.

MOBOX Security Assessment

MSV-�� | Integer Overflow

Category Severity Location Status

Mathematical Operations Minor MoboxStrategyV.sol: ���, ��� Resolved

Description

Although integer overflows would not happen if some variables such as now are within regular ranges,

SafeMath is still highly recommended for mathematical operations, if gas costs are not considered as a

most significant factor in implementations, to prevent exceptions.

Recommendation

We recommend applying SafeMath.add at the aforementioned line

MOBOX Security Assessment

MSV-�� | Missing slippage protection

Category Severity Location Status

Logical Issue Minor MoboxStrategyV.sol: ���, ��� Acknowledged

Description

Missing slippage protection in all swapExactTokensForTokensSupportingFeeOnTransferTokens()

functions.

Recommendation

There is well-known sandwich attacks in uniswap, we recommend always set slippage protection in

similar functions.

MOBOX Security Assessment

MSV-�� | Compile Error

Category Severity Location Status

Compiler Error Critical MoboxStrategyV.sol: ���~��� Resolved

Description

Error: Expected '(' but got identifier --> MoboxStrategyV.sol:������:

Recommendation

Fix the compile error by moving the "}" to an new line.

MOBOX Security Assessment

MSV-�� | Missing Checks for Reentrancy

Category Severity Location Status

Logical Issue Major MoboxStrategyV.sol: ���~���, ���, ���, ���, ���, ��� Resolved

Description

Many functions have state updates or event emits after external calls and thus are vulnerable to

reentrancy attack.

Recommendation

We recommend applying OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the

aforementioned functions to prevent reentrancy attack.We recommend applying OpenZeppelin

ReentrancyGuard library - nonReentrant modifier for the aforementioned functions to prevent

reentrancy attack.

MOBOX Security Assessment

MSV-�� | Missing Access Control

Category Severity Location Status

Logical Issue Major MoboxStrategyV.sol: ���~��� Resolved

Description

It's unsafe that init function can be called by anyone.

Recommendation

Add onlyOwner modifier.

MOBOX Security Assessment

MSV-�� | Implicitly Return Values

Category Severity Location Status

Coding Style Informational MoboxStrategyV.sol: ���, ��� Acknowledged

Description

Functions defined with return values but values are returned implicitly.

Recommendation

We recommend always return values explicitly.

MOBOX Security Assessment

MSV-�� | Ignored Return Values

Category Severity Location Status

Logical Issue Major MoboxStrategyV.sol: ���~��� Acknowledged

Description

Ignored return values may cause unexpected risks. For example, if repayBorrow() failed then leverage

can't decreased while no place aware this failure.

Recommendation

Check every function return values.

MOBOX Security Assessment

MSV-�� | Leverage risk

Category Severity Location Status

Logical Issue Informational MoboxStrategyV.sol: ���, ��� Resolved

Description

This strategy uses leverage, which may introduce potential risk. E.g If the Strategist doesn't deleverage

in time, the system may enter liquidity crisis in an extreme market.

Recommendation

Don't use leverage.

MOBOX Security Assessment

MSV-�� | �rd Party Dependencies

Category Severity Location Status

Control Flow Minor MoboxStrategyV.sol Acknowledged

Description

MoboxStrategyP and MoboxStrategyV are serving as the underlying entity to interact with third party

cake and venus protocols. The scope of the audit would treat those �rd party entities as black boxes

and assume its functional correctness. However in the real world, �rd parties may be compromised that

led to assets lost or stolen.

Recommendation

We understand that the business logic of Mobox requires the interaction with cake and venus for the

sake of pursuing capital gains of its users. We encourage the team to constantly monitor the status of

those �rd parties to mitigate the side effects when unexpected activities are observed.

MOBOX Security Assessment

MTM-�� | Mint to _dest address instead of mining pool

Category Severity Location Status

Logical Issue Minor MoboxToken.sol: �� Pending

Description

The comment of mint() said "Distribute MBOX to the main mining pool", but the code mints to _dest

"mint(dest, amountThisYear)"

Recommendation

We recommend to confirm whether this is intended.

MOBOX Security Assessment

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result

of a struct assignment operation affecting an in-memory struct rather than an in-storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of

private or delete.

Coding Style

MOBOX Security Assessment

Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different

code, such as a constructor assignment imposing different require statements on the input variables

than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format

and should otherwise be specified as constant contract variables aiding in their legibility and

maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to

compile using the specified version of the project.

MOBOX Security Assessment

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the

Company only to the extent permitted under the terms and conditions set forth in the Agreement. This

report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes

without CertiKʼs prior written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular

project or team. This report is not, nor should be considered, an indication of the economics or value of

any “product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as

investment advice of any sort. This report represents an extensive assessing process intending to help

our customers increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiKʼs position

is that each company and individual are responsible for their own due diligence and continuous

security. CertiKʼs goal is to help reduce the attack vectors and the high level of variance associated with

utilizing new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

MOBOX Security Assessment

About

Founded in ���� by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-

class technical expertise, alongside our proprietary, innovative tech, weʼre able to support the success

of our clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

MOBOX Security Assessment

